Java 5亿整数大文件怎么排序

 更新时间:2020-03-25 02:16:10   作者:佚名   我要评论(0)

问题
给你1个文件bigdata,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数:

6196302

3557681

6121580

2039345

2095006

1746773

7934312

2

问题

给你1个文件bigdata,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数:

6196302
3557681
6121580
2039345
2095006
1746773
7934312
2016371
7123302
8790171
2966901
...
7005375

现在要对这个文件进行排序,怎么搞?

内部排序

先尝试内排,选2种排序方式:

3路快排:

private final int cutoff = 8;

public <T> void perform(Comparable<T>[] a) {
    perform(a,0,a.length - 1);
  }

  private <T> int median3(Comparable<T>[] a,int x,int y,int z) {
    if(lessThan(a[x],a[y])) {
      if(lessThan(a[y],a[z])) {
        return y;
      }
      else if(lessThan(a[x],a[z])) {
        return z;
      }else {
        return x;
      }
    }else {
      if(lessThan(a[z],a[y])){
        return y;
      }else if(lessThan(a[z],a[x])) {
        return z;
      }else {
        return x;
      }
    }
  }

  private <T> void perform(Comparable<T>[] a,int low,int high) {
    int n = high - low + 1;
    //当序列非常小,用插入排序
    if(n <= cutoff) {
      InsertionSort insertionSort = SortFactory.createInsertionSort();
      insertionSort.perform(a,low,high);
      //当序列中小时,使用median3
    }else if(n <= 100) {
      int m = median3(a,low,low + (n >>> 1),high);
      exchange(a,m,low);
      //当序列比较大时,使用ninther
    }else {
      int gap = n >>> 3;
      int m = low + (n >>> 1);
      int m1 = median3(a,low,low + gap,low + (gap << 1));
      int m2 = median3(a,m - gap,m,m + gap);
      int m3 = median3(a,high - (gap << 1),high - gap,high);
      int ninther = median3(a,m1,m2,m3);
      exchange(a,ninther,low);
    }

    if(high <= low)
      return;
    //lessThan
    int lt = low;
    //greaterThan
    int gt = high;
    //中心点
    Comparable<T> pivot = a[low];
    int i = low + 1;

    /*
    * 不变式:
    *  a[low..lt-1] 小于pivot -> 前部(first)
    *  a[lt..i-1] 等于 pivot -> 中部(middle)
    *  a[gt+1..n-1] 大于 pivot -> 后部(final)
    *
    *  a[i..gt] 待考察区域
    */

    while (i <= gt) {
      if(lessThan(a[i],pivot)) {
        //i-> ,lt ->
        exchange(a,lt++,i++);
      }else if(lessThan(pivot,a[i])) {
        exchange(a,i,gt--);
      }else{
        i++;
      }
    }

    // a[low..lt-1] < v = a[lt..gt] < a[gt+1..high].
    perform(a,low,lt - 1);
    perform(a,gt + 1,high);
  }

归并排序:

 /**
   * 小于等于这个值的时候,交给插入排序
   */
  private final int cutoff = 8;

  /**
   * 对给定的元素序列进行排序
   *
   * @param a 给定元素序列
   */
  @Override
  public <T> void perform(Comparable<T>[] a) {
    Comparable<T>[] b = a.clone();
    perform(b, a, 0, a.length - 1);
  }

  private <T> void perform(Comparable<T>[] src,Comparable<T>[] dest,int low,int high) {
    if(low >= high)
      return;

    //小于等于cutoff的时候,交给插入排序
    if(high - low <= cutoff) {
      SortFactory.createInsertionSort().perform(dest,low,high);
      return;
    }

    int mid = low + ((high - low) >>> 1);
    perform(dest,src,low,mid);
    perform(dest,src,mid + 1,high);

    //考虑局部有序 src[mid] <= src[mid+1]
    if(lessThanOrEqual(src[mid],src[mid+1])) {
      System.arraycopy(src,low,dest,low,high - low + 1);
    }

    //src[low .. mid] + src[mid+1 .. high] -> dest[low .. high]
    merge(src,dest,low,mid,high);
  }

  private <T> void merge(Comparable<T>[] src,Comparable<T>[] dest,int low,int mid,int high) {

    for(int i = low,v = low,w = mid + 1; i <= high; i++) {
      if(w > high || v <= mid && lessThanOrEqual(src[v],src[w])) {
        dest[i] = src[v++];
      }else {
        dest[i] = src[w++];
      }
    }
  }

数据太多,递归太深 ->栈溢出?加大Xss?
数据太多,数组太长 -> OOM?加大Xmx?

耐心不足,没跑出来.而且要将这么大的文件读入内存,在堆中维护这么大个数据量,还有内排中不断的拷贝,对栈和堆都是很大的压力,不具备通用性。

sort命令来跑

sort -n bigdata -o bigdata.sorted

跑了多久呢?24分钟.

为什么这么慢?

粗略的看下我们的资源:
1. 内存
jvm-heap/stack,native-heap/stack,page-cache,block-buffer
2. 外存
swap + 磁盘

数据量很大,函数调用很多,系统调用很多,内核/用户缓冲区拷贝很多,脏页回写很多,io-wait很高,io很繁忙,堆栈数据不断交换至swap,线程切换很多,每个环节的锁也很多.

总之,内存吃紧,问磁盘要空间,脏数据持久化过多导致cache频繁失效,引发大量回写,回写线程高,导致cpu大量时间用于上下文切换,一切,都很糟糕,所以24分钟不细看了,无法忍受.

位图法

 private BitSet bits;

  public void perform(
      String largeFileName,
      int total,
      String destLargeFileName,
      Castor<Integer> castor,
      int readerBufferSize,
      int writerBufferSize,
      boolean asc) throws IOException {

    System.out.println("BitmapSort Started.");
    long start = System.currentTimeMillis();
    bits = new BitSet(total);
    InputPart<Integer> largeIn = PartFactory.createCharBufferedInputPart(largeFileName, readerBufferSize);
    OutputPart<Integer> largeOut = PartFactory.createCharBufferedOutputPart(destLargeFileName, writerBufferSize);
    largeOut.delete();

    Integer data;
    int off = 0;
    try {
      while (true) {
        data = largeIn.read();
        if (data == null)
          break;
        int v = data;
        set(v);
        off++;
      }
      largeIn.close();
      int size = bits.size();
      System.out.println(String.format("lines : %d ,bits : %d", off, size));

      if(asc) {
        for (int i = 0; i < size; i++) {
          if (get(i)) {
            largeOut.write(i);
          }
        }
      }else {
        for (int i = size - 1; i >= 0; i--) {
          if (get(i)) {
            largeOut.write(i);
          }
        }
      }

      largeOut.close();
      long stop = System.currentTimeMillis();
      long elapsed = stop - start;
      System.out.println(String.format("BitmapSort Completed.elapsed : %dms",elapsed));
    }finally {
      largeIn.close();
      largeOut.close();
    }
  }

  private void set(int i) {
    bits.set(i);
  }

  private boolean get(int v) {
    return bits.get(v);
  }

nice!跑了190秒,3分来钟.
以核心内存4663M/32大小的空间跑出这么个结果,而且大量时间在用于I/O,不错.

问题是,如果这个时候突然内存条坏了1、2根,或者只有极少的内存空间怎么搞?

外部排序

该外部排序上场了.
外部排序干嘛的?

内存极少的情况下,利用分治策略,利用外存保存中间结果,再用多路归并来排序; map-reduce的嫡系.

 

1.分

内存中维护一个极小的核心缓冲区memBuffer,将大文件bigdata按行读入,搜集到memBuffer满或者大文件读完时,对memBuffer中的数据调用内排进行排序,排序后将有序结果写入磁盘文件bigdata.xxx.part.sorted.
循环利用memBuffer直到大文件处理完毕,得到n个有序的磁盘文件:

2.合

现在有了n个有序的小文件,怎么合并成1个有序的大文件?
把所有小文件读入内存,然后内排?
(⊙o⊙)…
no!

利用如下原理进行归并排序:

 

我们举个简单的例子:

文件1:3,6,9
文件2:2,4,8
文件3:1,5,7

第一回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:1,排在文件3的第1行
那么,这3个文件中的最小值是:min(1,2,3) = 1
也就是说,最终大文件的当前最小值,是文件1、2、3的当前最小值的最小值,绕么?
上面拿出了最小值1,写入大文件.

第二回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:5,排在文件3的第2行
那么,这3个文件中的最小值是:min(5,2,3) = 2
将2写入大文件.

也就是说,最小值属于哪个文件,那么就从哪个文件当中取下一行数据.(因为小文件内部有序,下一行数据代表了它当前的最小值)

最终的时间,跑了771秒,13分钟左右.

less bigdata.sorted.text
...
9999966
9999967
9999968
9999969
9999970
9999971
9999972
9999973
9999974
9999975
9999976
9999977
9999978
...

到此这篇关于Java 5亿整数大文件怎么排序的文章就介绍到这了,更多相关Java 大文件排序内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

  • Java的二叉树排序以及遍历文件展示文本格式的文件树

相关文章

  • Java 5亿整数大文件怎么排序

    Java 5亿整数大文件怎么排序

    问题 给你1个文件bigdata,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数: 6196302 3557681 6121580 2039345 2095006 1746773 7934312 2
    2020-03-25
  • Golang通过小程序获取微信openid的方法示例

    Golang通过小程序获取微信openid的方法示例

    为什么要获取小程序的 openid 在开发微信小程序的过程中,小程序可以通过微信官方提供的登录能力方便地获取微信提供的用户身份标识,快速建立小程序内的用户体系。那
    2020-03-25
  • 详解Python 实现 ZeroMQ 的三种基本工作模式

    详解Python 实现 ZeroMQ 的三种基本工作模式

    简介 引用官方说法:ZMQ(以下 ZeroMQ 简称 ZMQ)是一个简单好用的传输层,像框架一样的一个 socket library,他使得 Socket 编程更加简单、简洁和性能更高。 是
    2020-03-25
  • 微信小程序 flexbox layout快速实现基本布局的解决方案

    微信小程序 flexbox layout快速实现基本布局的解决方案

    问题描述 flexbox layout ——弹性盒子布局。弹性盒子可以快速的对小程序进行布局。一般传统的小程序布局方法对内容量少的页面而言很方便,但对页面比较复杂的来讲
    2020-03-25
  • 解决Android Studio Gradle Metadata特别慢的问题

    解决Android Studio Gradle Metadata特别慢的问题

    如下所示: 更改build.gradle buildscript { repositories { // jcenter() // jcenter(){ url 'http://jcenter.bintray.com/'} maven{url 'http://m
    2020-03-25
  • Java线程优先级和守护线程原理解析

    Java线程优先级和守护线程原理解析

    一、线程优先级的介绍 java 中的线程优先级的范围是1~10,默认的优先级是5。“高优先级线程”会优先于“低优先级线程”执行。 java 中有两种线程:用户线程和守护线
    2020-03-25
  • Android实现获取meta-data和build.gradle的值

    Android实现获取meta-data和build.gradle的值

    有时候会用到meta-data中的参数,比如定义的渠道号,类似友盟统计。也会用到定义在build.gradle文件中android标签下的defaultConfig标签下,添加manifestPlaceholde
    2020-03-25
  • Java如何使用interrupt()终止线程

    Java如何使用interrupt()终止线程

    一、interrupt() 说明 interrupt()的作用是中断本线程。 本线程中断自己是被允许的;其它线程调用本线程的interrupt()方法时,会通过checkAccess()检查权限。这有
    2020-03-25
  • Android获取清单文件中的meta-data,解决碰到数值为null的问题

    Android获取清单文件中的meta-data,解决碰到数值为null的问题

    1.meta-data是什么?如何获取meta-data? 在AndroidManifest.xml中,元素可以作为子元素,被包在activity、application 、service、或者receiver元素中,不同的父元
    2020-03-25
  • 安装多版本Vue-CLI的实现方法

    安装多版本Vue-CLI的实现方法

    安装多版本Vue-CLI,即在电脑上同时安装多个版本的Vue-CLI。那么为什么要安装多个版本呢&#63;原因是Vue-cli3.0版本与之前的版本有了较大不同,当你要处理3.0之前的项
    2020-03-24

最新评论