TensorFlow卷积神经网络MNIST数据集实现示例

 更新时间:2021-11-03 19:35:46   作者:佚名   我要评论(0)

这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连

这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络。

import tensorflow as tf
import numpy as np
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
print("MNIST ready")
sess = tf.InteractiveSession()
# 定义好初始化函数以便重复使用。给权重制造一些随机噪声来打破完全对称,使用截断的正态分布,标准差设为0.1,
# 同时因为使用relu,也给偏执增加一些小的正值(0.1)用来避免死亡节点(dead neurons)
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 参数分别指定了卷积核的尺寸、多少个channel、filter的个数即产生特征图的个数

# 2x2最大池化,即将一个2x2的像素块降为1x1的像素。最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征。
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

n_input  = 784 # 28*28的灰度图,像素个数784
n_output = 10  # 是10分类问题

# 在设计网络结构前,先定义输入的placeholder,x是特征,y是真实的label
x = tf.placeholder(tf.float32, [None, n_input]) 
y = tf.placeholder(tf.float32, [None, n_output]) 
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 对图像做预处理,将1D的输入向量转为2D的图片结构,即1*784到28*28的结构,-1代表样本数量不固定,1代表颜色通道数量

# 定义第一个卷积层,使用前面写好的函数进行参数初始化,包括weight和bias
W_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 定义第二个卷积层
W_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# fc1,将两次池化后的7*7共128个特征图转换为1D向量,隐含节点1024由自己定义
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# Dropout层输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
pred = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #前向传播的预测值,
print("CNN READY")

# 定义损失函数为交叉熵损失函数
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=[1]))
# 优化器
optm = tf.train.AdamOptimizer(0.001).minimize(cost)
# 定义评测准确率的操作
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # 对比预测值的索引和真实label的索引是否一样,一样返回True,不一样返回False
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
# 初始化所有参数
tf.global_variables_initializer().run()
print("FUNCTIONS READY")

training_epochs = 1000 # 所有样本迭代1000次
batch_size = 100 # 每进行一次迭代选择100个样本
display_step = 1
for i in range(training_epochs):
    avg_cost = 0.
    total_batch = int(mnist.train.num_examples/batch_size)
    batch = mnist.train.next_batch(batch_size)
    optm.run(feed_dict={x:batch[0], y:batch[1], keep_prob:0.7})
    avg_cost += sess.run(cost, feed_dict={x:batch[0], y:batch[1], keep_prob:1.0})/total_batch
    if i % display_step ==0: # 每10次训练,对准确率进行一次测试
        train_accuracy = accuracy.eval(feed_dict={x:batch[0], y:batch[1], keep_prob:1.0})
        test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
        print("step: %d  cost: %.9f  TRAIN ACCURACY: %.3f  TEST ACCURACY: %.3f" % (i, avg_cost, train_accuracy, test_accuracy))
print("DONE")

训练迭代1000次之后,测试分类正确率达到了98.6%

step: 999  cost: 0.000048231  TRAIN ACCURACY: 0.990  TEST ACCURACY: 0.986

在2000次的时候达到了99.1%

step: 2004  cost: 0.000042901  TRAIN ACCURACY: 0.990  TEST ACCURACY: 0.991

相比之前简单神经网络,CNN的效果明显较好,这其中主要的性能提升都来自于更优秀的网络设计,即卷积神经网络对图像特征的提取和抽象能力。依靠卷积核的权值共享,CNN的参数量并没有爆炸,降低计算量的同时也减轻了过拟合,因此整个模型的性能有较大的提升。

以上就是TensorFlow卷积神经网络MNIST数据集实现示例的详细内容,更多关于TensorFlow卷积神经网络MNIST数据集的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
  • tensorflow学习笔记之mnist的卷积神经网络实例
  • TensorFlow实现卷积神经网络CNN
  • tensorflow使用CNN分析mnist手写体数字数据集
  • 使用tensorflow实现VGG网络,训练mnist数据集方式
  • 由浅入深学习TensorFlow MNIST 数据集

相关文章

  • TensorFlow卷积神经网络MNIST数据集实现示例

    TensorFlow卷积神经网络MNIST数据集实现示例

    这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连
    2021-11-03
  • Swift方法调度之类的普通方法底层探究

    Swift方法调度之类的普通方法底层探究

    1. 类的普通方法调度 写一个结构体和一个类,对比看看方法调用的方式: // 结构体 struct PersonStruct { func changClassName() {} }
    2021-11-01
  • Pytorch自动求导函数详解流程以及与TensorFlow搭建网络的对比

    Pytorch自动求导函数详解流程以及与TensorFlow搭建网络的对比

    一、定义新的自动求导函数 在底层,每个原始的自动求导运算实际上是两个在Tensor上运行的函数。其中,forward函数计算从输入Tensor获得的输出
    2021-11-01
  • Java 实例解析单例模式

    Java 实例解析单例模式

    目录单例模式的介绍优点缺点SynchronizedSynchronized示例Synchronized与非SynchronizedSingleton第一个示例第二个示例第三个示例第四个示例
    2021-11-01
  • Python函及模块的使用

    Python函及模块的使用

    目录1、函数的作用2、定义函数3、函数的参数3.1 参数的默认值3.2 可变参数4、用模块管理函数4.1 示例代码module.py5、变量的作用域1、函数的
    2021-11-01
  • 一文教你如何使用原生的Feign

    一文教你如何使用原生的Feign

    目录什么是Feign为什么使用Feign为什么要使用HTTP client 为什么要使用Feign 如何使用Feign项目环境说明 引入依赖 入门例子 个性化配置
    2021-10-30
  • 你一定不知道的Java Unsafe用法详解

    你一定不知道的Java Unsafe用法详解

    目录Unsafe是什么如何正确地获取Unsafe对象Unsafe实现CAS锁使用Unsafe创建对象Unsafe加载类总结Unsafe是什么 首先我们说Unsafe类位于rt.jar里
    2021-10-30
  • 利用Go Plugin实现插件化编程的简单方法

    利用Go Plugin实现插件化编程的简单方法

    目录前言1.快速开始2.注意事项总结前言 说到插件这个东西,很多人都不陌生,一般来说,插件化有几个好处,一个是增加程序扩展性,丰富功能。
    2021-10-30
  • 在Java中Scanner的用法总结

    在Java中Scanner的用法总结

    最近在做OJ类问题的时候,经常由于Scanner的使用造成一些细节问题导致程序不通过(最惨的就是网易笔试,由于sc死循环了也没发现,导致AC代码
    2021-10-30
  • 如何让Spring Rest 接口中路径参数可选

    如何让Spring Rest 接口中路径参数可选

    目录Spring Rest接口路径参数可选RestFul风格传参Spring Rest接口路径参数可选 我有一个 Spring Rest 服务,其中有一个路径参数是可选的(实
    2021-10-30

最新评论