Python人工智能之混合高斯模型运动目标检测详解分析

 更新时间:2021-11-15 06:37:16   作者:佚名   我要评论(0)

【人工智能项目】混合高斯模型运动目标检测

本次工作主要对视频中运动中的人或物的边缘背景进行检测。

那么走起来瓷!!!
原视频

高斯算

【人工智能项目】混合高斯模型运动目标检测

在这里插入图片描述

本次工作主要对视频中运动中的人或物的边缘背景进行检测。
那么走起来瓷!!!

原视频

在这里插入图片描述

高斯算法提取工作

import cv2
import numpy as np

# 高斯算法
class gaussian:
    def __init__(self):
        self.mean = np.zeros((1, 3))
        self.covariance = 0
        self.weight = 0;
        self.Next = None
        self.Previous = None

class Node:
    def __init__(self):
        self.pixel_s = None
        self.pixel_r = None
        self.no_of_components = 0
        self.Next = None

class Node1:
    def __init__(self):
        self.gauss = None
        self.no_of_comp = 0
        self.Next = None

covariance0 = 11.0
def Create_gaussian(info1, info2, info3):
    ptr = gaussian()
    if (ptr is not None):
        ptr.mean[1, 1] = info1
        ptr.mean[1, 2] = info2
        ptr.mean[1, 3] = info3
        ptr.covariance = covariance0
        ptr.weight = 0.002
        ptr.Next = None
        ptr.Previous = None

    return ptr

def Create_Node(info1, info2, info3):
    N_ptr = Node()
    if (N_ptr is not None):
        N_ptr.Next = None
        N_ptr.no_of_components = 1
        N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian(info1, info2, info3)

    return N_ptr

List_node = []
def Insert_End_Node(n):
    List_node.append(n)

List_gaussian = []
def Insert_End_gaussian(n):
    List_gaussian.append(n)

def Delete_gaussian(n):
    List_gaussian.remove(n);

class Process:
    def __init__(self, alpha, firstFrame):
        self.alpha = alpha
        self.background = firstFrame

    def get_value(self, frame):
        self.background = frame * self.alpha + self.background * (1 - self.alpha)
        return cv2.absdiff(self.background.astype(np.uint8), frame)

def denoise(frame):
    frame = cv2.medianBlur(frame, 5)
    frame = cv2.GaussianBlur(frame, (5, 5), 0)

    return frame

capture = cv2.VideoCapture('1.mp4')
ret, orig_frame = capture.read( )
if ret is True:
    value1 = Process(0.1, denoise(orig_frame))
    run = True
else:
    run = False

while (run):
    ret, frame = capture.read()
    value = False;
    if ret is True:
        cv2.imshow('input', denoise(frame))
        grayscale = value1.get_value(denoise(frame))
        ret, mask = cv2.threshold(grayscale, 15, 255, cv2.THRESH_BINARY)
        cv2.imshow('mask', mask)
        key = cv2.waitKey(10) & 0xFF
    else:
        break

    if key == 27:
        break

    if value == True:
        orig_frame = cv2.resize(orig_frame, (340, 260), interpolation=cv2.INTER_CUBIC)
        orig_frame = cv2.cvtColor(orig_frame, cv2.COLOR_BGR2GRAY)
        orig_image_row = len(orig_frame)
        orig_image_col = orig_frame[0]

        bin_frame = np.zeros((orig_image_row, orig_image_col))
        value = []

        for i in range(0, orig_image_row):
            for j in range(0, orig_image_col):
                N_ptr = Create_Node(orig_frame[i][0], orig_frame[i][1], orig_frame[i][2])
                if N_ptr is not None:
                    N_ptr.pixel_s.weight = 1.0
                    Insert_End_Node(N_ptr)
                else:
                    print("error")
                    exit(0)

        nL = orig_image_row
        nC = orig_image_col

        dell = np.array((1, 3));
        mal_dist = 0.0;
        temp_cov = 0.0;
        alpha = 0.002;
        cT = 0.05;
        cf = 0.1;
        cfbar = 1.0 - cf;
        alpha_bar = 1.0 - alpha;
        prune = -alpha * cT;
        cthr = 0.00001;
        var = 0.0
        muG = 0.0;
        muR = 0.0;
        muB = 0.0;
        dR = 0.0;
        dB = 0.0;
        dG = 0.0;
        rval = 0.0;
        gval = 0.0;
        bval = 0.0;

        while (1):
            duration3 = 0.0;
            count = 0;
            count1 = 0;
            List_node1 = List_node;
            counter = 0;
            duration = cv2.getTickCount( );
            for i in range(0, nL):
                r_ptr = orig_frame[i]
                b_ptr = bin_frame[i]

                for j in range(0, nC):
                    sum = 0.0;
                    sum1 = 0.0;
                    close = False;
                    background = 0;

                    rval = r_ptr[0][0];
                    gval = r_ptr[0][0];
                    bval = r_ptr[0][0];

                    start = List_node1[counter].pixel_s;
                    rear = List_node1[counter].pixel_r;
                    ptr = start;

                    temp_ptr = None;
                    if (List_node1[counter].no_of_component > 4):
                        Delete_gaussian(rear);
                        List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;

                    for k in range(0, List_node1[counter].no_of_component):
                        weight = List_node1[counter].weight;
                        mult = alpha / weight;
                        weight = weight * alpha_bar + prune;
                        if (close == False):
                            muR = ptr.mean[0];
                            muG = ptr.mean[1];
                            muB = ptr.mean[2];

                            dR = rval - muR;
                            dG = gval - muG;
                            dB = bval - muB;

                            var = ptr.covariance;

                            mal_dist = (dR * dR + dG * dG + dB * dB);

                            if ((sum < cfbar) and (mal_dist < 16.0 * var * var)):
                                background = 255;

                            if (mal_dist < (9.0 * var * var)):
                                weight = weight + alpha;
                                if mult < 20.0 * alpha:
                                    mult = mult;
                                else:
                                    mult = 20.0 * alpha;

                                close = True;

                                ptr.mean[0] = muR + mult * dR;
                                ptr.mean[1] = muG + mult * dG;
                                ptr.mean[2] = muB + mult * dB;
                                temp_cov = var + mult * (mal_dist - var);
                                if temp_cov < 5.0:
                                    ptr.covariance = 5.0
                                else:
                                    if (temp_cov > 20.0):
                                        ptr.covariance = 20.0
                                    else:
                                        ptr.covariance = temp_cov;

                                temp_ptr = ptr;

                        if (weight < -prune):
                            ptr = Delete_gaussian(ptr);
                            weight = 0;
                            List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;
                        else:
                            sum += weight;
                            ptr.weight = weight;

                        ptr = ptr.Next;

                    if (close == False):
                        ptr = gaussian( );
                        ptr.weight = alpha;
                        ptr.mean[0] = rval;
                        ptr.mean[1] = gval;
                        ptr.mean[2] = bval;
                        ptr.covariance = covariance0;
                        ptr.Next = None;
                        ptr.Previous = None;
                        Insert_End_gaussian(ptr);
                        List_gaussian.append(ptr);
                        temp_ptr = ptr;
                        List_node1[counter].no_of_components = List_node1[counter].no_of_components + 1;

                    ptr = start;
                    while (ptr != None):
                        ptr.weight = ptr.weight / sum;
                        ptr = ptr.Next;

                    while (temp_ptr != None and temp_ptr.Previous != None):
                        if (temp_ptr.weight <= temp_ptr.Previous.weight):
                            break;
                        else:
                            next = temp_ptr.Next;
                            previous = temp_ptr.Previous;
                            if (start == previous):
                                start = temp_ptr;
                                previous.Next = next;
                                temp_ptr.Previous = previous.Previous;
                                temp_ptr.Next = previous;
                            if (previous.Previous != None):
                                previous.Previous.Next = temp_ptr;
                            if (next != None):
                                next.Previous = previous;
                            else:
                                rear = previous;
                                previous.Previous = temp_ptr;

                        temp_ptr = temp_ptr.Previous;

                    List_node1[counter].pixel_s = start;
                    List_node1[counter].pixel_r = rear;
                    counter = counter + 1;

capture.release()
cv2.destroyAllWindows()

在这里插入图片描述

createBackgroundSubtractorMOG2

  • 背景减法 (BS) 是一种常用且广泛使用的技术,用于通过使用静态相机生成前景蒙版(即,包含属于场景中运动物体的像素的二值图像)。
  • 顾名思义,BS 计算前景蒙版,在当前帧和背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般地说,根据观察到的场景的特征,可以将所有内容视为背景。

在这里插入图片描述

背景建模包括两个主要步骤:

  • 后台初始化;
  • 背景更新。

在第一步中,计算背景的初始模型,而在第二步中,更新该模型以适应场景中可能的变化。

import cv2

#构造VideoCapture对象
cap = cv2.VideoCapture('1.mp4')

# 创建一个背景分割器
# createBackgroundSubtractorMOG2()函数里,可以指定detectShadows的值
# detectShadows=True,表示检测阴影,反之不检测阴影。默认是true
fgbg  = cv2.createBackgroundSubtractorMOG2()
while True :
    ret, frame = cap.read() # 读取视频
    fgmask = fgbg.apply(frame) # 背景分割
    cv2.imshow('frame', fgmask) # 显示分割结果
    if cv2.waitKey(100) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

小结

点赞评论走起来,瓷们!!!

在这里插入图片描述

到此这篇关于Python人工智能之混合高斯模型运动目标检测详解分析的文章就介绍到这了,更多相关Python 高斯模型运动目标检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • AI:如何训练机器学习的模型
  • python适合人工智能的理由和优势
  • Python人工智能深度学习CNN
  • Python人工智能深度学习模型训练经验总结

相关文章

  • Python人工智能之混合高斯模型运动目标检测详解分析

    Python人工智能之混合高斯模型运动目标检测详解分析

    【人工智能项目】混合高斯模型运动目标检测 本次工作主要对视频中运动中的人或物的边缘背景进行检测。 那么走起来瓷!!! 原视频 高斯算
    2021-11-15
  • Golang通脉之流程控制详情

    Golang通脉之流程控制详情

    目录1、if else(分支结构)1.1 if条件判断基本写法1.2 if条件判断特殊写法2、for(循环结构)2.1 无限循环3、for range(键值循环)4、switch cas
    2021-11-15
  • shell脚本源码安装nginx的详细过程

    shell脚本源码安装nginx的详细过程

    SHELL概念 SHELL是什么?SHELL是Linux内核跟用户之间沟通的桥梁; SHELL也是一个命令解释器,用户可以输入命令到SHELL,SHELL将命令
    2021-11-15
  • shell 中小括号、中括号及大括号的区别解析

    shell 中小括号、中括号及大括号的区别解析

    目录一、小括号,圆括号()1、单小括号 ()2、双小括号 (( ))二、中括号,方括号[]1、单中括号 []2、双中括号[[ ]]三、大括号、花括号 {}1、
    2021-11-15
  • Python MNIST手写体识别详解与试练

    Python MNIST手写体识别详解与试练

    【人工智能项目】MNIST手写体识别实验及分析 1.实验内容简述 1.1 实验环境 本实验采用的软硬件实验环境如表所示: 在Windows操作系统下,采
    2021-11-15
  • Python 中的 copy()和deepcopy()

    Python 中的 copy()和deepcopy()

    目录1、copy.copy()2、deepcopy.copy()前言: 在处理列表和字典时,尽管传递引用常常是最方便的方法,但如果函数修改了传入的列表或字典,可
    2021-11-15
  • 详解OpenMV图像处理的基本方法

    详解OpenMV图像处理的基本方法

    目录一、图像处理基础知识二、OpenMV图像处理的基本方法1. 感光元件相关名词解释2. 图像的基本运算3. 使用图像的统计信息4. 画图5. 寻找色块
    2021-11-15
  • Golang通脉之数据类型详情

    Golang通脉之数据类型详情

    目录1、标识符与关键字1.1 标识符1.2 关键字2、变量2.1 什么是变量2.2 变量类型2.3 变量声明3、常量3.1 iota4、基本数据类型4.1 整型4.2 浮点
    2021-11-15
  • Golang通脉之map详情

    Golang通脉之map详情

    目录1、定义2、基本使用3、判断键是否存在4、map的遍历5、delete()函数删除map元素6、指定顺序遍历map7、map类型的切片8、value为切片类型的
    2021-11-15
  • 教你用Django将前端的数据存入Mysql数据库

    教你用Django将前端的数据存入Mysql数据库

    目录1.在app下的models.py中创建新的模板2.数据迁移(用pycharm自带的Terminal工具即可)3.在app下的views.py中创建新的视图4.前端5.效果1.在
    2021-11-15

最新评论