networkx库绘制带权图给无权图加权重输出
更新时间:2022-05-13 14:10:16 作者:佚名 我要评论(0)
最近在研究图学习,在用networkx库绘图的时候发现问题。
'''
author:zheng
time:2020.10.23
问题
最近在研究图学习,在用networkx库绘图的时候发现问题。
''' author:zheng time:2020.10.23 ''' import networkx as nx import random g = nx.karate_club_graph() # 空手道俱乐部 for u,v in g.edges: print(u,v) g.add_edge(u, v, weight=random.uniform(0, 1)) # 权值为(0,1)间的随机数 print(g.edges())
输出结果
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10), (0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2), (1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (2, 32), (3, 7), (3, 12), (3, 13), (4, 6), (4, 10), (5, 6), (5, 10), (5, 16), (6, 16), (8, 30), (8, 32), (8, 33), (13, 33), (19, 33), (31, 24), (31, 25), (31, 28), (31, 32), (31, 33), (30, 32), (30, 33), (9, 33), (27, 23), (27, 24), (27, 33), (28, 33), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 33), (33, 14), (33, 15), (33, 18), (33, 20), (33, 22), (33, 23), (33, 26), (33, 29), (23, 25), (23, 29), (25, 24), (29, 26)]
发现了问题,我明明通过random.uniform(0, 1)随机设置了权重为什么在结果输出中并未显示,是输入权重的问题,还是结果展示的问题。
''' author:zheng time:2020.10.23 ''' import networkx as nx import random g = nx.karate_club_graph() # 空手道俱乐部 for u,v in g.edges: g.add_edge(u, v, weight=random.uniform(0, 1)) # 权值为(0,1)间的随机数 print(g.edges(data=True))
大家看看两个代码有没有什么不同,在G.edges(data=True)中添加了data=True
此时输出结果:
[(0, 1, {'weight': 0.49899129531032826}), (0, 2, {'weight': 0.7493395367183026}), (0, 3, {'weight': 0.9805046801748599}), (0, 4, {'weight': 0.644560549909913}), (0, 5, {'weight': 0.022461095194206915}), (0, 6, {'weight': 0.39855273941801683}), (0, 7, {'weight': 0.9167666610641618}), (0, 8, {'weight': 0.3736839965822629}), (0, 10, {'weight': 0.1685687039463848}), (0, 11, {'weight': 0.5900599708379352}), (0, 12, {'weight': 0.49772285717726605}), (0, 13, {'weight': 0.6988903320924684}), (0, 17, {'weight': 0.8108991409995218}), (0, 19, {'weight': 0.21743421569163335}), (0, 21, {'weight': 0.687637570308398}), (0, 31, {'weight': 0.13180440967486262}), (1, 2, {'weight': 0.0603379086168323}), (1, 3, {'weight': 0.9536653778354264}), (1, 7, {'weight': 0.1680232359702576}), (1, 13, {'weight': 0.23821372652905115}), (1, 17, {'weight': 0.6861169007257469}), (1, 19, {'weight': 0.006553274592374314}), (1, 21, {'weight': 0.23452495215883118}), (1, 30, {'weight': 0.7638165639559286}), (2, 3, {'weight': 0.18381620307197954}), (2, 7, {'weight': 0.08671998389998026}), (2, 8, {'weight': 0.7395899045684956}), (2, 9, {'weight': 0.5973616237830935}), (2, 13, {'weight': 0.25253256663029156}), (2, 27, {'weight': 0.4151629971620948}), (2, 28, {'weight': 0.6830413630275037}), (2, 32, {'weight': 0.10877354662752325}), (3, 7, {'weight': 0.3165078261209674}), (3, 12, {'weight': 0.3258985972202395}), (3, 13, {'weight': 0.5617183737707032}), (4, 6, {'weight': 0.9944831897451706}), (4, 10, {'weight': 0.4258447405573552}), (5, 6, {'weight': 0.17102663345956715}), (5, 10, {'weight': 0.41020894392823837}), (5, 16, {'weight': 0.24048864347638477}), (6, 16, {'weight': 0.5401785263069063}), (8, 30, {'weight': 0.4604358340149278}), (8, 32, {'weight': 0.9601569527970788}), (8, 33, {'weight': 0.2905405465193912}), (13, 33, {'weight': 0.2556445407164615}), (19, 33, {'weight': 0.3008126988319231}), (31, 24, {'weight': 0.8781944129721222}), (31, 25, {'weight': 0.392828914742127}), (31, 28, {'weight': 0.7410701847068474}), (31, 32, {'weight': 0.39869250595380246}), (31, 33, {'weight': 0.4380052794486696}), (30, 32, {'weight': 0.4587792580500568}), (30, 33, {'weight': 0.5106934704075864}), (9, 33, {'weight': 0.9037424067215868}), (27, 23, {'weight': 0.9151325306454512}), (27, 24, {'weight': 0.6079907996445639}), (27, 33, {'weight': 0.6168782680542676}), (28, 33, {'weight': 0.9529880704286767}), (32, 14, {'weight': 0.21711370788129514}), (32, 15, {'weight': 0.21906480255644156}), (32, 18, {'weight': 0.36297161231472697}), (32, 20, {'weight': 0.8295507296873654}), (32, 22, {'weight': 0.725850047579389}), (32, 23, {'weight': 0.06395474428944792}), (32, 29, {'weight': 0.021001018687274553}), (32, 33, {'weight': 0.29227780907194645}), (33, 14, {'weight': 0.7898337840851372}), (33, 15, {'weight': 0.06574640956244104}), (33, 18, {'weight': 0.3193055980182168}), (33, 20, {'weight': 0.22814267912232755}), (33, 22, {'weight': 0.934928086748862}), (33, 23, {'weight': 0.8780586608909188}), (33, 26, {'weight': 0.834765093283264}), (33, 29, {'weight': 0.8927802653939352}), (23, 25, {'weight': 0.18106036608743914}), (23, 29, {'weight': 0.7824721548411848}), (25, 24, {'weight': 0.9362577071184671}), (29, 26, {'weight': 0.06557785001633887})]
如何只输出权重
import networkx as nx import random g = nx.karate_club_graph() # 空手道俱乐部 for u,v in g.edges: g.add_edge(u, v, weight=random.uniform(0, 1)) # 权值为(0,1) for (u,v,d) in g.edges(data=True): print(d['weight'])
输出结果
0.9175521740544361
0.09841104142600388
0.9557658899707079
0.9256010898041206
0.2519120041349847
0.48370396192288767
0.8354304958648846
0.758094795660556
0.7910256982243447
0.6281003207621544
0.9801420646231339
0.7941450155753779
0.3851720075568309
0.802202234860892
0.7923045754263267
0.5270583359776736
0.9523963539542339
0.7474601472346581
0.044707615637251674
0.5349188097983026
0.6158693844408302
0.9456154478628968
0.7547788968185274
0.5648525235741113
0.6657063624514532
0.3109915743055601
0.3969190047820317
0.8763009836310122
0.7101598558464499
0.012225959063178693
0.700579386399397
0.8304116006624506
0.426518724548162
0.07244870577629914
0.36116795615537345
0.45781457416039606
0.25726914791707645
0.29778955309109023
0.8892096639219873
0.39322230058450647
0.5085017515323529
0.9597980742524421
0.08034618164792517
0.9143712112937563
0.17242150180445381
0.8914706349104955
0.8480034205451665
0.8217034225251223
0.45552196009659873
0.3909280195122691
0.45119988941609357
0.02984583822414133
0.14404544949710196
0.45459370924953857
0.10296953351890004
0.4948127850493056
0.9238669854480596
0.9399144983422378
0.919211279645529
0.24084759450828674
0.4410486851096309
0.7699702465967465
0.27749525807367836
0.9449097003790671
0.5019309896062647
0.42774455164796255
0.43988066338230847
0.7405733579782761
0.2308870299365694
0.12306785713306911
0.7139426386075743
0.2640769424119722
0.031149630992576394
0.07700734539599274
0.37034537464573547
0.7034898163898959
0.8557141929947621
0.06539918397508715
以上就是networkx库绘制带权图给无权图加权重输出的详细内容,更多关于networkx带权图无权图输出的资料请关注脚本之家其它相关文章!
- python networkx 根据图的权重画图实现
- python将邻接矩阵输出成图的实现
- 使用Python的networkx绘制精美网络图教程
- python networkx 包绘制复杂网络关系图的实现
- Python Matplotlib 基于networkx画关系网络图
您可能感兴趣的文章:
相关文章
Nevercenter Silo Pro(3D多边形建模) 2022.0 beta 2 x64 破解版 附激活教程
Nevercenter Silo Pro(3D多边形建模) 2022.0 beta 2 x64 破解版 附激活教程,Nevercenter Silo Pro 2022激活版是一款轻量级、闪电般快速的 3D 多边形建模器和 UV 映射器,以极其实惠的价格提供深度的工业级工具集和易于掌握的工作流程。其轻巧、专注和便携的特性使其成为十多年来的首选纯建模器2022-04-14NevercenterSilo激活补丁 2022.0 beta 2 x64 附破解教程
NevercenterSilo激活补丁 2022.0 beta 2 x64 附破解教程,怎么激活Nevercenter Silo Pro 2022?Nevercenter Silo Pro 2022激活补丁分享!今天给大家分享的是Nevercenter Silo Pro 2022的激活补丁,此款补丁可以快速完美的激活Nevercenter Silo Pro 2022最新版本,下面有详细的安装激活教程2022-04-14SolidWorks 2022 SP0-2.0 Full Premium 中文完美破解版(附激活补丁+教程) 64位
SolidWorks 2022 SP0-2.0 Full Premium 中文完美破解版(附激活补丁+教程) 64位,SolidWorks 2022破解版是一款计算机辅助设计、工程分析和准备,用于生产任何复杂性和用途的产品,SolidWorks 2022新的增强功能,可理顺和加速整个产品开发流程,从而提高效率、提升准确性和改善协作2022-04-13
最新评论