networkx库绘制带权图给无权图加权重输出

 更新时间:2022-05-13 14:12:28   作者:佚名   我要评论(0)

目录问题输出结果如何只输出权重输出结果问题
最近在研究图学习,在用networkx库绘图的时候发现问题。
'''
author:zheng
time:2020.10.23

问题

最近在研究图学习,在用networkx库绘图的时候发现问题。

'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱乐部
for u,v in g.edges:
    print(u,v)
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 权值为(0,1)间的随机数
print(g.edges())

输出结果

[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10), (0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2), (1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (2, 32), (3, 7), (3, 12), (3, 13), (4, 6), (4, 10), (5, 6), (5, 10), (5, 16), (6, 16), (8, 30), (8, 32), (8, 33), (13, 33), (19, 33), (31, 24), (31, 25), (31, 28), (31, 32), (31, 33), (30, 32), (30, 33), (9, 33), (27, 23), (27, 24), (27, 33), (28, 33), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 33), (33, 14), (33, 15), (33, 18), (33, 20), (33, 22), (33, 23), (33, 26), (33, 29), (23, 25), (23, 29), (25, 24), (29, 26)]

发现了问题,我明明通过random.uniform(0, 1)随机设置了权重为什么在结果输出中并未显示,是输入权重的问题,还是结果展示的问题。

'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱乐部
for u,v in g.edges:
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 权值为(0,1)间的随机数
print(g.edges(data=True))

大家看看两个代码有没有什么不同,在G.edges(data=True)中添加了data=True

此时输出结果:

[(0, 1, {'weight': 0.49899129531032826}), (0, 2, {'weight': 0.7493395367183026}), (0, 3, {'weight': 0.9805046801748599}), (0, 4, {'weight': 0.644560549909913}), (0, 5, {'weight': 0.022461095194206915}), (0, 6, {'weight': 0.39855273941801683}), (0, 7, {'weight': 0.9167666610641618}), (0, 8, {'weight': 0.3736839965822629}), (0, 10, {'weight': 0.1685687039463848}), (0, 11, {'weight': 0.5900599708379352}), (0, 12, {'weight': 0.49772285717726605}), (0, 13, {'weight': 0.6988903320924684}), (0, 17, {'weight': 0.8108991409995218}), (0, 19, {'weight': 0.21743421569163335}), (0, 21, {'weight': 0.687637570308398}), (0, 31, {'weight': 0.13180440967486262}), (1, 2, {'weight': 0.0603379086168323}), (1, 3, {'weight': 0.9536653778354264}), (1, 7, {'weight': 0.1680232359702576}), (1, 13, {'weight': 0.23821372652905115}), (1, 17, {'weight': 0.6861169007257469}), (1, 19, {'weight': 0.006553274592374314}), (1, 21, {'weight': 0.23452495215883118}), (1, 30, {'weight': 0.7638165639559286}), (2, 3, {'weight': 0.18381620307197954}), (2, 7, {'weight': 0.08671998389998026}), (2, 8, {'weight': 0.7395899045684956}), (2, 9, {'weight': 0.5973616237830935}), (2, 13, {'weight': 0.25253256663029156}), (2, 27, {'weight': 0.4151629971620948}), (2, 28, {'weight': 0.6830413630275037}), (2, 32, {'weight': 0.10877354662752325}), (3, 7, {'weight': 0.3165078261209674}), (3, 12, {'weight': 0.3258985972202395}), (3, 13, {'weight': 0.5617183737707032}), (4, 6, {'weight': 0.9944831897451706}), (4, 10, {'weight': 0.4258447405573552}), (5, 6, {'weight': 0.17102663345956715}), (5, 10, {'weight': 0.41020894392823837}), (5, 16, {'weight': 0.24048864347638477}), (6, 16, {'weight': 0.5401785263069063}), (8, 30, {'weight': 0.4604358340149278}), (8, 32, {'weight': 0.9601569527970788}), (8, 33, {'weight': 0.2905405465193912}), (13, 33, {'weight': 0.2556445407164615}), (19, 33, {'weight': 0.3008126988319231}), (31, 24, {'weight': 0.8781944129721222}), (31, 25, {'weight': 0.392828914742127}), (31, 28, {'weight': 0.7410701847068474}), (31, 32, {'weight': 0.39869250595380246}), (31, 33, {'weight': 0.4380052794486696}), (30, 32, {'weight': 0.4587792580500568}), (30, 33, {'weight': 0.5106934704075864}), (9, 33, {'weight': 0.9037424067215868}), (27, 23, {'weight': 0.9151325306454512}), (27, 24, {'weight': 0.6079907996445639}), (27, 33, {'weight': 0.6168782680542676}), (28, 33, {'weight': 0.9529880704286767}), (32, 14, {'weight': 0.21711370788129514}), (32, 15, {'weight': 0.21906480255644156}), (32, 18, {'weight': 0.36297161231472697}), (32, 20, {'weight': 0.8295507296873654}), (32, 22, {'weight': 0.725850047579389}), (32, 23, {'weight': 0.06395474428944792}), (32, 29, {'weight': 0.021001018687274553}), (32, 33, {'weight': 0.29227780907194645}), (33, 14, {'weight': 0.7898337840851372}), (33, 15, {'weight': 0.06574640956244104}), (33, 18, {'weight': 0.3193055980182168}), (33, 20, {'weight': 0.22814267912232755}), (33, 22, {'weight': 0.934928086748862}), (33, 23, {'weight': 0.8780586608909188}), (33, 26, {'weight': 0.834765093283264}), (33, 29, {'weight': 0.8927802653939352}), (23, 25, {'weight': 0.18106036608743914}), (23, 29, {'weight': 0.7824721548411848}), (25, 24, {'weight': 0.9362577071184671}), (29, 26, {'weight': 0.06557785001633887})]

如何只输出权重

import networkx as nx
import random
g = nx.karate_club_graph()  # 空手道俱乐部
for u,v in g.edges:
    g.add_edge(u, v, weight=random.uniform(0, 1))  # 权值为(0,1)
for (u,v,d) in g.edges(data=True):
    print(d['weight'])

输出结果

0.9175521740544361
0.09841104142600388
0.9557658899707079
0.9256010898041206
0.2519120041349847
0.48370396192288767
0.8354304958648846
0.758094795660556
0.7910256982243447
0.6281003207621544
0.9801420646231339
0.7941450155753779
0.3851720075568309
0.802202234860892
0.7923045754263267
0.5270583359776736
0.9523963539542339
0.7474601472346581
0.044707615637251674
0.5349188097983026
0.6158693844408302
0.9456154478628968
0.7547788968185274
0.5648525235741113
0.6657063624514532
0.3109915743055601
0.3969190047820317
0.8763009836310122
0.7101598558464499
0.012225959063178693
0.700579386399397
0.8304116006624506
0.426518724548162
0.07244870577629914
0.36116795615537345
0.45781457416039606
0.25726914791707645
0.29778955309109023
0.8892096639219873
0.39322230058450647
0.5085017515323529
0.9597980742524421
0.08034618164792517
0.9143712112937563
0.17242150180445381
0.8914706349104955
0.8480034205451665
0.8217034225251223
0.45552196009659873
0.3909280195122691
0.45119988941609357
0.02984583822414133
0.14404544949710196
0.45459370924953857
0.10296953351890004
0.4948127850493056
0.9238669854480596
0.9399144983422378
0.919211279645529
0.24084759450828674
0.4410486851096309
0.7699702465967465
0.27749525807367836
0.9449097003790671
0.5019309896062647
0.42774455164796255
0.43988066338230847
0.7405733579782761
0.2308870299365694
0.12306785713306911
0.7139426386075743
0.2640769424119722
0.031149630992576394
0.07700734539599274
0.37034537464573547
0.7034898163898959
0.8557141929947621
0.06539918397508715

以上就是networkx库绘制带权图给无权图加权重输出的详细内容,更多关于networkx带权图无权图输出的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
  • python networkx 根据图的权重画图实现
  • python将邻接矩阵输出成图的实现
  • 使用Python的networkx绘制精美网络图教程
  • python networkx 包绘制复杂网络关系图的实现
  • Python Matplotlib 基于networkx画关系网络图

相关文章

  • SpringBoot整合Mongodb实现增删查改的方法

    SpringBoot整合Mongodb实现增删查改的方法

    目录一、什么是MongoDB二、在Window10上安装MongoDB三、配置MongoDB服务四、启动服务五、SpringBoot整合MongoDB一、什么是MongoDB MongoDB与
    2022-05-13
  • networkx库绘制带权图给无权图加权重输出

    networkx库绘制带权图给无权图加权重输出

    目录问题输出结果如何只输出权重输出结果问题 最近在研究图学习,在用networkx库绘图的时候发现问题。 ''' author:zheng time:2020.10.23
    2022-05-13
  • go语言心跳超时的实现示例

    go语言心跳超时的实现示例

    目录一、背景二、心跳超时的实现2.1 通过select case (设计概念比较多)2.2 通过time.sleep(简单有效)三、个人的实现观感一、背景 本文描
    2022-05-13
  • Java实现跳跃表的示例详解

    Java实现跳跃表的示例详解

    跳表全称叫做跳跃表,简称跳表,是一个随机化的数据结构,实质就是一种可以进行二分查找的有序链表。跳表在原有的有序列表上面增加多级索引,
    2022-05-13
  • 利用Java编写一个属于自己的日历

    利用Java编写一个属于自己的日历

    目录问题提出一点提示源码分享问题提出 编写程序,输入年份,打印出该年的年历(12个月的),效果如下图所示。 一点提示 使用 Java 自带的
    2022-05-13
  • C#操作注册表的方法

    C#操作注册表的方法

    目录一、注册表操作简介注册表巢Registry静态类RegistryKey类二、注册表项的创建、打开、删除1、创建,CreateSubKey2、打开,OpenSubKey3、删
    2022-05-13
  • C#操作注册表的方法

    C#操作注册表的方法

    目录一、注册表操作简介注册表巢Registry静态类RegistryKey类二、注册表项的创建、打开、删除1、创建,CreateSubKey2、打开,OpenSubKey3、删
    2022-05-13
  • python?函数定位参数+关键字参数+inspect模块

    python?函数定位参数+关键字参数+inspect模块

    目录函数内省(function introspection)定位参数和仅限关键字参数inspect模板函数内省(function introspection) 除了__doc__属性, 函数对象还
    2022-05-13
  • Python?pluggy模块的用法示例演示

    Python?pluggy模块的用法示例演示

    目录1 pluggy 简介2 安装3 使用初体验4 详解解释5 HookspeckMarker装饰器支持传入一些特定的参数6 HookImplMarker装饰器也支持传入一些特定的
    2022-05-13
  • go语言中如何使用select的实现示例

    go语言中如何使用select的实现示例

    目录1.基本语法2.select语句的实际应用在golang语言中,select语句 就是用来监听和channel有关的IO操作,当IO操作发生时,触发相应的case动作
    2022-05-13

最新评论